小波变换(WT)是一种新的变换分析方法,继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。
小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了 Fourier 变换的困难问题,成为继 Fourier 变换以来在科学方法上的重大突破。
传统的信号理论,是建立在 Fourier 分析基础上的,而 Fourier 变换作为一种全局性的变化,其有一定的局限性,如不具备局部化分析能力、不能分析非平稳信号等。在实际应用中人们开始对 Fourier 变换进行各种改进,以改善这种局限性,如 STFT(短时傅立叶变换)。由于 STFT 采用的的滑动窗函数一经选定就固定不变,故决定了其时频分辨率固定不变,不具备自适应能力,而小波分析很好的解决了这个问题。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继 Fourier 分析之后的又一有效的时频分析方法。小波变换与 Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了 Fourier 变换不能解决的许多困难问题。
是由法国从事石油信号处理的工程师 J.Morlet 在 1974 年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如 1807 年法国的热学工程师 J.B.J.Fourier 提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到认可一样。幸运的是,早在七十年代,A.Calderon 表示定理的发现、Hardy 空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且 J.O.Stromberg 还构造了历史上非常类似于现在的小波基;1986 年著名数学家 Y.Meyer 偶然构造出一个真正的小波基,并与 S.Mallat 合作建立了构造小波基的统一方法–多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家 I.Daubechies 撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。与 Fourier 变换、视窗 Fourier 变换(Gabor 变换)相比,具有良好的时频局部化特性,能有效的从信号中提取资讯,因而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。
与 Fourier 变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了 Fourier 变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier 分析、样条分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。信号分析的主要目的是寻找一种简单有效的信号变换方法,使信号所包含的重要信息能显现出来。小波分析属于信号时频分析的一种,在小波分析出现之前,傅立叶变换是信号处理领域应用最广泛、效果最好的一种分析手段。傅立叶变换是时域到频域互相转化的工具,从物理意义上讲,傅立叶变换的实质是把这个波形分解成不同频率的正弦波的叠加和。正是傅立叶变换的这种重要的物理意义,决定了傅立叶变换在信号分析和信号处理中的独特地位。傅立叶变换用在两个方向上都无限伸展的正弦曲线波作为正交基函数,把周期函数展成傅立叶级数,把非周期函数展成傅立叶积分,利用傅立叶变换对函数作频谱分析,反映了整个信号的时间频谱特性,较好地揭示了平稳信号的特征。
小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。